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Abstract

Arctigenin, the major active constituent of FrucArstii, has been reported to inhibit
the growth of various tumors and alleviate colifiis study aimed to prove the
protective effect of arctigenin on colitis-assoedtcancer (CAC) and explore its
mechanisms. Orally administered arctigenin prewetie progression of colitis and
protected against colon carcinogenesis in azoxyaneth(AOM)/dextran sulfate
sodium (DSS)-induced CAC mice. Arctigenin downregedl NLRP3 inflammasome
activation and fatty acid oxidation (FAO) metabolisn macrophages, as determined
by untargeted metabolomics. Arctigenin also inkibithe expression of carnitine
palmitoyltransferase 1 (CPT1), reduced the acetylavf a-tubulin, and disrupted
NLRP3 complex formation, which in turn inactivatdte NLRP3 inflammasome.
Downregulation of the CPT1-FAO-acetyl-coenzyme Acefgl-CoA)-acetylated
a-tubulin pathway was observed to inhibit the eff@dt arctigenin on NLRP3
inflammasome assembly, as confirmed by CPT1 oveesspn. Lastly, arctigenin
was shown to inhibit NLRP3 inflammasome activateomd improve CAC in mice,
and the effect was significantly diminished by twerexpression of adeno-associated
virus (AAV)9-CPT1. Taken together, these resultsvshhat the inhibition of NLRP3
inflammasome assembly in macrophages due to FAQhskmulation contributes to
the preventative effect of arctigenin against CAQr findings highlight the potential

value of arctigenin to reduce the risk of CAC itigats with colitis.
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1. Introduction

Colorectal cancer (CRC) ranks third among all typéscancer in terms of
incidence and second in terms of mortality. In 2048 estimated 1.8 million new
CRC cases were diagno$ed The pathophysiological properties of CRC havetget
be fully explored. The epidemiological and expemtaé literature suggests that
chronic inflammation is a primary risk factor fdret development of CRC. Patients
with ulcerative colitis, a common inflammatory bdwksease (IBD), are up to 30
times more likely to develop CRC comparing to Healtindividuaf *
Colitis-associated cancer (CAC) is an importanthgos of CRC. CRC patients lack
symptomatic clinical features in the early stagdiich makes clinical diagnosis
difficult while the disease is still curable chaltgnd’. Preventive strategies, including

the control of IBD, are undoubtedly valuable foe thanagement of CRC.

Although the precise pathogenesis of the developneénchronic colitis to
carcinogenesis has yet to be identified, a podfaf cytokines including tumor
necrosis factorr (TNF-o), interleukin-B (IL-1B), and IL-6, which are mainly
secreted by macrophages in the inflammatory mibietihe colon, has been shown to
play key roles in this proces<Zaki et al. observed elevated levels of thesekiyes
in the blood and colonic mucosa of IBD patients &#&C model mic TNF-o can
stimulate the production of the molecules that eaD&A damage and mutations.

IL-6 can promote the survival of the neoplasticotolepithelial cells during the
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development of CAC. More importantly, ILB1participates in the differentiation,
proliferation, and activation of immune cells, ara/entually facilitates the
perpetuation of colitis and the progression of CAChe inflammasome is a
multiprotein complex that is well known to be ail for the production of IL{1
One of the most intensively studied inflammasonsethe NACHT, LRR, and PYD
domain-containing protein 3 (NLRP3) inflammasomehicla contains the sensor
NLRP3, an apoptosis-associated speck-like prot@intaining a CARD (ASC)
adaptor and caspase-1 protédsgarly studies demonstrated that mice with NLRP3,
ASC, or IL-18 deficiency were protected from experimental celénd the induction
and progression of CRE Furthermore, in NLRP3- and caspase-1-deficienenthe

proliferation of gastrointestinal epithelial celigs found to be reduckd

Further studies have demonstrated that the distiomtmensal bacterial species
Proteus mirabilis can induce robust secretion of IB-Yia activation of the NLRP3
inflammasome in intestinal Ly&%¥" monocytes in dextran sulfate sodium
(DSS)-induced colitis, which could be linked to thereased severity of colitfs The
over-activation of the NLRP3 inflammasome and sqgbeat excess secretion of
mature IL-B can mediate tissue damage and promote intestiriinimatiort”.
Therefore, the prevention of excessive activatibthe NLRP3 inflammasome can be

beneficial for hindering the development of CAC.
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Arctigenin is a lignin ingredient isolated from tbeed fruits ofArctium lappa L.
(Fructus Arctii), a herbal medicine commonly usedChina and Japan. Our previous
studies demonstrated that orally administered gantn substantially ameliorated
DSS-induced colitis in mice by inhibiting Thl andIl7 cell respons&s Other
research groups have reported that arctigenin ekg@mnominent anti-tumor activities

in vivo and vitro*®®

In particular, a multicenter phase Il clinicaliatr
(UMINO00010111) is underway to evaluate the efficand safety of arctigenin in the
treatment of pancreatic cancer patients who areagtefry to gemcitabine and
fluoropyrimidine'®?° These findings suggest that arctigenin has tieertappotential
against CRC. In the present study, we studied tfiecte of arctigenin on

azoxymethane (AOM)/DSS-induced CAC in mice and tineerlying mechanisms

based on the activation of the NLRP3 inflammasamepionic macrophages.



92 2. Materialsand methods

93 2.1 Materials

94  Arctigenin (purity > 98 %) was purchased from Xi'@wyuan Pharmaceutical Co. Ltd.
95 Mesalazine was obtained from Ethypharm Pharma@dutiCo Ltd. AOM,
96 lipopolysaccharide (LPS, E. coli: Serotype O55:B&pmoxir (ETX), and dimethyl
97 sulfoxide (DMSO) were purchased from Sigma-Aldri¢bt. Louis, USA). DSS
98 (molecular weight: 36000-50000 Da) was suppliedByBiomedical (Irvine, USA).
99 Enzyme-linked immunosorbent assay (ELISA) kits (F&NHAL-1p, IL-6, and IL-17)
100 were obtained from Dakewe Biotech (Shenzhen, Chiga)SA kits for acetyl
101 coenzyme A (acetyl-CoA) were obtained from BioVisi(Gan Francisco, USA), and
102 ELISA kits for IL-18 were obtained from Lianke Bemth (Hangzhou, China). TRIzol
103 reagent was purchased from Invitrogen (CA, USA)PARbuffer, NP-40 buffer,
104 bovine serum albumin (BSA), and 2-(4-amidinopheifylipdolecarbamidine
105 dihydrochloride (DAPI) were purchased from Beyoti@technology (Shanghai,
106 China). Protease inhibitor cocktail was purchasethfBoster Biological Technology
107 Co. Ltd (Wuhan China); Primary antibodies againétRR3 (15101S), pro-IL{i
108 (12242S), and IL{L (52718S and 83186S) were obtained from Cell Siggal
109 Technology (MA, USA), primary antibody against A$§£-514414) was purchased
110 from Santa Cruz (CA, USA), and primary antibodigaiast pro-caspase-1 (ab207802)

111 and caspase-1 (ab179515) were purchased from Ad&nUSA). Alexa Fluor 488
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goat anti-rabbit IgG (AS054) and Alexa Fluor 594ganti-rabbit IgG (AS053) were
obtained from ABclonal Technology (Wuhan, Chinajinfary antibodies against
PCNA (BS1289), CD68 (BS6885), arfdactin (BS6007M) were purchased from
Bioworld Technology, Inc. (St. Paul, MN, USA). Tieerce BCA protein assay kit
and Triton X-100 were supplied by Thermo Fishere8tfic (CA, USA). Phorbol
12-myristate 13-acetate (PMA) was purchased froomega Corporation (WI, USA).
Murine GM-CSF was obtained from PeproTech (Suzkiuna).

2.2 Animals

Six-week-old male C57BL/6 mice were supplied by @emparative Medicine
Centre of Yangzhou University (Yangzhou, China)eThice were maintained in an
animal laboratory under a 12-h light/dark cyclamatenvironmental temperature of 24
+ 2 °C, fed on standard chow pellets, and alloweckss to watead libitum. The
mice were acclimatized for one week before the expmmts. The animals were
randomly assigned to experimental groups for itheivo studies. Collection and
evaluation of the data from the vivo experiments were performed in a single-blind
manner. The animal experiments were conducted thighapproval of the Animal
Ethics Committee of China Pharmaceutical Universihd conformed to the National

Institutes of the Health guidelines for the ethiesé of animals.

2.3 Induction of CAC and treatments

Mice were given a single intraperitoneal injectmfrthe azoxymethane (10 mg/kg) in
combination with three cycles of 2% DSS in drinkingter for one week, before the

water containing DSS was replaced with regular kilngp water for two weeks of

8
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recovery (Fig. 1A). The mice were weighed each*da$ The mice were randomly
divided into the following groups: the normal grouppe AOM/DSS group, the
arctigenin (25, 50 mg/kg) group, and the 5-aminogkt acid (5-ASA, mesalazine,
75 mg/kg) group. In the experiment to verify th&erof carnitine palmitoyltransferase
1 (CPT1) in inflammasome activation and colon cargenesis, the mice were
randomly divided into the following groups: the m&l group, the adeno-associated
virus (AAV)-control + AOM/DSS group, the AAV-contrer arctigenin (25 mg/kg)
group, the AAV-CPT1 + AOM/DSS group, the AAV-CPT1atctigenin (25 mg/kg)
group, and the ETX (2 mg/kg) group. One week befibre experiment began,
AAV-CPT1 (Vigene Biosciences, Maryland, USA) ovgrexssion and AAV-control
were administered by enema. Arctigenin was susmgende 0.5% sodium
carboxymethyl cellulose (CMC-Na), and AAV9-CPT1 gfad virus and
AAV9-control virus suspension (virus titer > #pwere diluted with normal saline,
respectively. Arctigenin or mesalazine was admenest orally once a day, and ETX
was intraperitoneally injected every other day kgrihe recovery period. The mice
were euthanized 1 h after the final administratidlso, the mice in the normal and

AOM/DSS groups were given an equal volume of veh{ol5 % CMC-Na).

2.4 M acr oscopic assessment and histological analysis of colonic tissues

The distal sections of the colons of the mice wepxised, fixed in 4%

paraformaldehyde, and embedded in paraffin. Théiosec (5um thickness) were
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stained with hematoxylin-eosin (H&E) and examinathg a microscope (Olympus,
Japan) at 200x magnification. The histological esomwere calculated by a

treatment-blind observer according to previousporeed criteri&d’.

2.5 Immunofluorescence of colon tissues

Briefly, the colon tissue sections were deparafedi rehydrated, and washed in
phosphate-buffered saline (PBS). The sections vierated with 3% hydrogen
peroxide and blocked with 3% bovine serum alburB8A) before incubation with
primary antibody (1:100) for 1 h at room temperatuifhe slides were then
counter-stained with DAPI for 30 min. The reactimas stopped by washing the
slides with water for 5 min. Images were acquirathva fluorescence microscope

(Olympus, Lake Success, NY).
2.6 Enzyme-linked immunosor bent assay (EL1SA)

The mouse colons were homogenized with PBS. Theogemates were centrifuged
at 12,000 x rpm at 4 °C for 15 min. The levels ®fFFa, IL-6, IL-17, IL-1B, and

acetyl-CoA in the supernatants of colon homogenat@® measured using ELISA
kits according to the manufacturers’ instructioflse IL-13 and acetyl-CoA levels in
the differentiated THP-1 cells and bone marrowadsti macrophages (BMDMSs)

were measured using ELISA kits according to theufecturers’ instructions.
2.7 Cdl culture

Human acute monocytic leukemia THP-1 cells, obthiftem the Cell Bank of the

10



175 Chinese Academic of Sciences (Shanghai, China)ge vesittured in RPMI-1640
176 medium (Gibco, Carlsbad, USA), supplemented witko1@/v) fetal bovine serum
177 (Gibco, Carlsbad, USA) and 0.05 mM 2-mercaptoeth&mgma-Aldrich (St. Louis,
178 USA). The cells were cultured in a humidified eowment with 5% C@at 37 °C.
179 Differentiation of THP-1 cells was induced by stiation with 0.5 mM PMA for 3 h.
180 The differentiated cells were washed three timdh WBS and treated with jdg/mL
181 LPS in the absence or presence of arctigenin fortBen stimulated with adenosine
182 triphosphate (ATP, 5 mM) for 1 h. BMDMs were is@atfrom C57 BL/6 mice and
183 cultured with Dulbecco’s Modified Eagle Medium (DMWE Gibco, Carlsbad, USA)
184 supplemented with 10% (v/v) fetal bovine serum @®ibCarlsbad, USA) and 20
185 ng/mL GM-CSF. The cells were harvested and seede@-well plates. The culture
186 medium was changed every three days, and the adhaeezrophages were obtained
187  within approximately one week. After culture foh@vithout GM-CSF, the cells were
188 washed three times with PBS and treated withgimL LPS in the absence or

189 presence of arctigenin for 3 h, then stimulatedhWEP (5 mM) for 1 h.
190 28MTT assay

191 The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tet@dium bromide (MTT, St. Louis,
192 MO, USA) assay was performed to detect the celbilig of THP-1 cells and
193 BMDMs in the presence of arctigenin. Briefly, THReélls or BMDMs (1x16 cells

194 per well) were seeded in 96-well culture plates ardted with arctigenin for 20 h.

11
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Then, 20uL of MTT (5 mg/mL) was added, and the cells wereuimated for an

additional 4 h at 37 °C. The medium was then rerdmarefully to avoid destroying
the formazan crystals formed. DMSO was added tb eatl, and a microplate reader
(Thermo Fisher Scientific, Waltham, MassachusditSA) was used to read the

absorbance of the dissolved formazan at a wavéieafdi70 nm.

2.9 Apoptosis analysis

THP-1 cells and BMDMs were treated as described/@b®he cells were cultured
with or without arctigenin for 24 h, and then déied, washed, and stained with
Annexin-V/Pl (ROCHE) according to the manufactuserhstructions. The cell

samples were analyzed with the FACSCalibur flovomter (Becton, Dickinson and

Company, NJ, USA). The data were analyzed with Btoeoftware (Tree Star).

2.10 Western blotting

The cells and colonic tissues were lysed on icé8@min in NP-40 buffer containing
protease inhibitor cocktail (1:100), and then iretigll for 30 min on ice. The
homogenates were centrifuged, and the protein otrateons were determined using
a Pierce BCA protein assay kit. Samples (&) of total protein were subjected to
sodium dodecyl sulphate—polyacrylamide gel elettoopsis (SDS-PAGE) analysis.
The protein was transferred from the gel to the mames, which were subsequently
blocked with 5% (w/v) skimmed milk for 2 h, and ubmted with specific primary
antibodies overnight at 4 °C. Next, the membranesrewincubated with
IRDye-conjugated secondary antibody for 1 h at @7 Detection was performed
using the Odyssey Infrared Imaging System (LI-COR,, Lincoln, USA).

12
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2.11 Co-immunoprecipitation assay

THP-1 cells or BMDMs were lysed on ice in RIPA lyduffer for 15 min, and then
centrifuged at 12, 000 rpm for 5 min. The supematavere collected and incubated
with the antibody against NLRP3 overnight at 4 °@hveonstant rotation. The next
day, the cocktails were incubated with the prot&inG beads for 4 h at room
temperature with constant rotation. The precipitanfis collected through
centrifugation at 5 000 rpm for 5 min, and then kexk3 times with RAPI lysis buffer
to remove non-specific binding proteins. The washedds were re-suspended with
loading buffer and heated at 95 °C for 5 min. Theads were removed by
centrifugation at 12 000 rpm for 1 min. The immurexgpitated proteins were

prepared for western blotting.

2.12 Quantitativereal-time PCR

Total RNA was extracted from the colon tissues aefls with Trizol reagent
according to the manufacturer’s instructions. T&HIA was reverse transcribed using
the 5X All-In-One RT MasterMix (Abm, Zhengjiang, {Dh). Real-time polymerase
chain reaction (PCR) was performed with BrightGréspress 2X qPCR MasterMix
(Abm, Zhengjiang, China) on a Bio-rad 1Q5 (HerculelSA). The level of mRNA
was normalized to the expressionfséctin. The results were analyzed using the 2

“AACt method. The primer sequences for the analyzedsgamelisted in Tables 1 and

Table 1. Mouse primer pairs used in real-time p@gase chain reaction.

Gene Sequence (5’-3’) Length (bp)

13



Name/ID

l11b Forward tgccaccttttgacagtgatg (21)
((i:rﬁé;): Reverse tgtgctgctgcgagatttga (21)
Tnf Forward ccctcacactcacaaaccac (20)
(ID: 21926) Reverse acaaggtacaacccatcggc (20)
116 Forward cacatgttctctgggaaatcg (21)
Gene ID:
( 16193) Reverse cacatgttctctgggaaatcg (21)
Ptgs2 Forward cccccacagtcaaagacact (20)
(Gene ID: Reverse atcatcagaccaggcacca (19)
19225)
Nos2 Forward agggaatcttggagcgagtt (20)
(Gene ID: Reverse gcagcctcttgtctttgacc (20)
18126)
l117a Forward ggactctccaccgcaatgaa (20)
(Gene ID: Reverse tttccctccgceattgacaca (20)
16171)
Actb Forward agcaagcaggagtacgatgag (21)
ne ID:
(Cii4:1) Reverse ggtgtaaaacgcagctcagtaa (22)
Nlrp3 Forward ccacatctgattgtgttaatggct (24)
(§f6n7e9l9D): Reverse gggcttaggtccacacagaa (20)
Cptla Forward ctccgectgagcecatgaag (19)
(Gene ID: Reverse caccagtgatgatgccattct (21)
12894)

238

14



239 Table 2. Human primer pairs used in real-time p@gase chain reaction.

Gene Sequence (5’-3) Length (bp)
Name/ID
IL1B Forward TGGTGGTCGGAGATTCGTA (19)
(Gene ID: Reverse TGGCAATGAGGATGACTTGT (20)
3553)
TNF Forward CTGAGTCGGTCACCCTTCTC (20)
(Gene ID: Reverse AACCTCCTCTCTGCCATCAA (20)
7124)
ACTB Forward CATGTACGTTGCTATCCAGGC (21)
(GeGr(‘; ID: Reverse CTCCTTAATGTCACGCACGAT (21)
NLRP3 Forward GCATTTCCTCTCTAGCTGTTCCT (23)
(Gene ID: Reverse TTAGGCTTCGGTCCACACAGAAAG (24)
114548)
CPT1A Forward ATCAATCGGACTCTGGAAACGG (22)
(Gene ID: Reverse TCAGGGAGTAGCGCATGGT (19)
1374)

240
241 2.13Transient transfection

242  The transfection of CPT plasmid was performed bipgislieff Trans™ Liposomal

243 Transfection Reagent (Yeasen Biotech Co., Ltd. §hain China) at a final
244  concentration of 50 nM according to the manufactsiiestructions. The transfection
245 efficiency was assessed by using quantitative PGRCR) analysis 24 h after
246 transfection. Subsequently, the THP-1 cells or BMDMere prepared for further

247 analysis.

248  2.14 Immunofluorescence staining
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Cells were plated and cultured on plates. Afteattreent as mentioned above in the
cell culture section, THP-1 cells or BMDMs weredik with 4% paraformaldehyde
for 15min and permeabilized with 0.5% Triton X-100 forrb&. Then, to minimize
background staining, the cells were blocked withBB$#A for 1h at room temperature.
The cells were incubated with the appropriate prynantibodies overnight at 4 °C.
After being washed with PBS, the cells were wasdred incubated with fluorescent
secondary antibody and DAPI. The images were ce@tursy a fluorescence

microscope (Olympus BX51).
2.15 Measurement of CPT-1 activity

CPT-1 activity was measured in a buffer contairil®@ mM Tris/HCI, pH 8.0, 0.1%
Triton X-100, 1 mm EDTA, 0.01 mM palmitoyl-CoA, and).5 mM
dithiobis-2-nitrobenzoic acid (DTNB), with or withb 1.25 mM L-carnitine. The
absorbance was read at 412 nm with a spectropht#6feCPT-1 activity was
calculated as the difference between the rateshén pgresence and absence of

L-carnitine, and expressed as nanomoles of CoAsetd per minute per 416ells.
2.16 Liquid chromatogr aphy-mass spectrometry (L C-M S) metabolomic analysis

Extraction ofmetabolites:THP-1 cells (2 x 10cells/sample) were transferred into
1.5-mL tubes with 100QL of extraction solvent (methanol: acetonitrile:terax 2:2:1
viviv, which was kept at -20 before extraction). The samples were homogenized i
a ball mill for 4 min at 45Hz, then treated withtrakound for 5 min (in ice water).

16



269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

The samples were homogenized three times, and atediat -20 °C for 1 h for
protein precipitation. Following that, the samplesre centrifuged at 12000 rpm for
15 min at 4 °C. The supernatants (8§25 were transferred into 1.5-mL tubes, and
dried in a vacuum concentrator without heatingeAthat, 10QuL extraction solvent
(acetonitrile: water = 1:1 v/v) was added into thbes. The samples were vortexed
for 30 s and sonicated for 10 min at 4 °C, thertrdfeged for 15 min at 12000 rpm at
4 °C. The supernatants (6QL) were transferred into fresh 2-mL liquid
chromatography—mass spectrometry (LC-MS) glassswvidtinally, 10 uL of
supernatant from each sample was taken for quabtytrol (QC), and 6QuL of

supernatant was taken for UHPLC-QTOF-MS analysis.

LC-MS/MS analysis: the LC-MS/MS analysis was parfed using an UHPLC
system (1290, Agilent Technologies) with a UPLC BRhide column (1.7um
2.1*100 mm, Waters) coupled to TripleTOF 6600 (QFf@B Sciex). The mobile
phase consisted of 25 mM NBIAc and 25 mM NHOH in water (pH = 9.75) (A) and
acetonitrile (B) was carried with elution gradiestfollows: 0 min, 95% B; 7 min, 65%
B; 9 min, 40% B; 9.1 min, 95% B; 12 min, 95% B, waiwas delivered at 0.5
mL/min. The injection volume was .. The TripleTOF mass spectrometer was used
due to its ability to acquire MS/MS spectra on mafoimation-dependent basis (IDA)
during an LC/MS experiment. In this mode, the astjoin software (Analyst TF 1.7,
AB Sciex) continuously evaluates the full scan syrWMS data as it collects and

triggers the acquisition of MS/MS spectra dependingoreselected criteria. In each
17
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310

cycle, 12 precursor ions with an intensity greatean 100 were chosen for
fragmentation at a collision energy (CE) of 30 \6 (US/MS events with a product
ion accumulation time of 50 msec each). The elsptay ionization (ESI) source
conditions were set as follows: lon source gas @0aBsi, lon source gas 2 as 60 Psi,
Curtain gas as 35 Psi, source temperature 6500CSpray Voltage Floating (ISVF)

5000 V or -4000 V in positive or negative modespezxtively.

Data preprocessing and annotation: the MS raw fdetawere converted to mzXML
format using ProteoWizard, and processed by R mackeCMS (version 3.2). The
preprocessing results generated a data matrixctmprised the retention time (RT),
mass-to-charge ratio (m/z) values, and peak interfsiter XCMS data processing, R
package CAMERA was used for peak annotation. Ahdnse MS2 database was
applied for metabolite identification. An interngtndard normalization method was
also employed in this data analysis. The resultimge-dimensional data involving
the peak number, sample name, and normalized pezk w&ere entered into
MetaboAnalyst (http://www.metaboanalyst.ca) for npipal component analysis
(PCA) and orthogonal projections to latent struesurdiscriminate analysis
(OPLS-DA). PCA showed the distribution of origintalaTo obtain a higher level of
group separation and a better understanding of vilweables responsible for
classification, supervised OPLS-DA was applied.eAftards, the parameters for the
classification from the software weréYRand GY, which were stable and good for

fitness and prediction. Sevenfold cross-validati@s used to estimate the robustness
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and predictive ability of our model. A permutatioest was performed to further
validate the model. The low values of th&YQntercept indicated the robustness of

the models, showing a low risk of overfitting amdiability.
2.17 Fatty acid oxidation (FAQO) assay

For the fatty acid oxidation (FAO) assay, THP-1x& x 10 cells/well) were plated
on XF96 cell culture microplates (101085-004, Sesddioscience). The oxygen
consumption rate (OCR), as the parameter of mitodhal FAO, was measured with
a Seahorse XF96 bioanalyzer using the XF palmB&A-FAO substrate (Seahorse
Bioscience, Agilent, USA) and Mito Stress Test K¥eahorse Bioscience, Agilent,
USA) according to the manufacturer’s instructiodfie OCR for oxidation of
palmitate-BSA was measured in THP-1 cells treatéd palmitate-BSA (180 uM),
etomoxir (40 puM), oligomycin (1.5 pM), and carborrylanide 4-(trifluoromethoxy)

phenylhydrazone (FCCP, 2 uM).
2.18 Statistical analysis

All data were expressed as mean * standard errathe@fmean (S.E.M.). The
differences between multiple groups were compasednz-way analysis of variance
(ANOVA) followed by Tukey’s test (SPSS, Chicago, A)SThe correlation between
two variables was evaluated by Spearman's nonp#iancerrelation analysisP <

0.05 was considered to be statistically significant
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3. Reaults

3.1 Arctigenin prevented tumorigenesisin mice with CAC

To assess whether arctigenin can decrease thatgearet incidence of CAC, we
established an AOM/DSS mouse model via an intreperal injection of
carcinogenic AOM followed by three cycles of 2% Di&SlIrinking water (Fig. 1A).
The survival rate of the mice in the AOM/DSS mogielup was 75%. All of the mice
(100%) in the arctigenin-treated group survivedy(HAiB). The body weights of the
mice were monitored throughout the experiment. riAéi@ch exposure to 2% DSS, the
mice showed a substantial reduction in body welghit regained the weight after
being given normal drinking water. The mice in thectigenin (25, 50 mg/kg)
treatment groups lost less weight after each DS$®xe and made a quicker

recovery than the mice in the AOM/DSS group (Fi@).1

All mice were sacrificed in the ¥5week after the induction of CAC. The
incidence of tumors was 100% in all groups of mexeept the normal group. As
shown in Figure 1D, the mean colon length of theemin the AOM/DSS group was
slightly shorter than that of the normal group miEewer and smaller tumors were
seen in the mice treated with arctigenin (25, 50kagigor with 5-ASA (75 mg/kg).
The macroscopic assessment of the mouse colonseghthat arctigenin decreased
the number of tumors and average tumor load, asdltesl in smaller tumors (Fig.
1E-G). Histopathological examination revealed ttte colons of the mice in the
AOM/DSS group exhibited large adenocarcinomas it mucosa, with abnormal
glands, expanding lumens, and infiltration of inflmatory cells. Arctigenin
significantly ameliorated pathological changes)uding mucosal damage, necrosis,
and infiltration of inflammatory cells, and alsoduzed the number and size of
adenocarcinomas inside the mucosa and decreasadrtii®er of abnormal cells (Fig.

1H).
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On the other hand, proliferating cell nuclear agmig(PCNA) is involved in
eukaryotic DNA replication. Tumor cells exhibit wigous proliferation activity, and
PCNA can be used as an indicator of cell proliferatstatus. CD68, a type |
transmembrane glycoprotein, is a pan-marker of apmages. Immunochemistry
staining showed that the numbers of PCNalls and CD68cells in the colon tissues
of mice in the AOM/DSS group were significantly ieased compared with those in
the colon tissues of the normal group, while asstig treatment decreased the
numbers of PCNAcells and CD68cells (Fig. 11, J). Together, these results ingida

that arctigenin administration reduced colitis-assted tumorigenesis in mice.

3.2 Arctigenin suppressed IL-1f maturation in the colonic macrophages of mice

with CAC

In the past decade, many studies have demonsttagéédmacrophages aggravate
inflammation and drive tumorigenesis and prograsbip secreting pro-inflammatory
cytokineg' ® #* To study the underlying mechanisms by which gestin protects
against CAC, we observed the expression of inflatorgacytokines in the colonic
tumor tissues of mice. Figure 2A shows that the rARIpression levels of tumor
necrosis facton (TNF-o), interleukin 17A (IL-17A), inducible nitric oxideynthase
(INOS), cyclo-oxygenase (COX2), interleukiB-XIL-1B), and interleukin-6 (IL-6)
were significantly increased in the colon tissudésthe AOM/DSS-treated mice.
Arctigenin at 25 and 50 mg/kg remarkably inhibittd mMRNA expression of TNé:;
IL-17A, INOS, and IL-B. ELISA confirmed that the protein expression of FriJ
IL-17A, and IL-13 was also inhibited by arctigenin (Fig. 2B). Théaibitory potency

of arctigenin on IL-B expression was significantly stronger than theatfit exerted
on other proinflammatory cytokines. As the enhaneegression of cleaved ILBlis

an indicator of inflammasome activatidnthe mouse colon tissue sections were
stained to detect inflammasome activation. Immuwuwfscence assay showed a

significantly increased number of CD6BILRP3 macrophages in the colon tissues
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of AOM/DSS-treated mice, which could be restraifgdarctigenin treatment (Fig.
20).

Additionally, we further determined the NLRP3 imflenasome complex protein in
the colon tissues. The protein expression of caspas the AOM/DSS model group
mice was found to be strongly enhanced comparedatioin the mice in the normal
control group. In the arctigenin-treated groupsge tlevels of NLRP3 and
pro-caspase-1 were still at elevated levels; howsdtiie levels of cleaved caspase-1
and cleaved IL-f decreased (Fig. 2D). These data showed that enctignhibited
the expression of proinflammatory cytokines in tdodonic macrophages of the mice

with CAC, especially that of ILf}, by suppressing NLRP3 inflammasome activation.

3.3 Arctigenin disrupted NL RP3 inflammasome assembly in macrophages

To uncover the mechanisms by which arctigenin seggas NLRP3 inflammasome
activation in the colon macrophages of CAC mice, &lored the impact of
arctigenin on the inflammatory activation of cuédrmacrophages stimulated with
LPS/ATP in vitro. Arctigenin (3, 10, and 3QM) showed concentration-dependent
inhibition of the secretion of ILfLand IL-18 from LPS/ATP-treated THP-1 cells and
BMDMs, with no clear impact on the survival of maghages (Fig. 3A-D and
Supplementary Figure 1A-D). These results werenurconfirmed by the detection
of the pl7 fragment of mature I31 Moreover, the activation of caspase-1 in
macrophages, as indicated by the presence of da@ed form and enzyme activity,
was significantly inhibited by arctigenin (3, 10nda 30 uM) (Fig. 3E and
Supplementary Figure 1E). Furthermore, immunopretipn and
immunofluorescence analyses showed that arctigelsion disrupted the process of
NLRP3 inflammasome formation (Fig. 3F, G and Supetary Figure 1F, G). The
inhibitory effect of arctigenin on NLRP3 inflammamse assembly was significantly

stronger than that on NLRP3 mRNA expression (Fig.a®d Supplementary Figure
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1H), indicating that arctigenin inhibited NLRP3 lethmasome activation mainly by
disrupting assembly rather than interfering witke teixpression of NLRP3, ASC,

pro-caspase 1, or pro-1L31

3.4 Arctigenin downregulated FAO, but not glycolysis, during NLRP3

inflammasome assembly in macrophages

Increasing evidence suggests that cellular metsoolin particular the processes of
glycolysis, FAO, and amino acid metabolism, playscrétical role in NLRP3
inflammasome activation by providing intermedidimsinflammasome assemBf{?®
We measured the metabolite profiles of THP-1 csiljiulated with LPS/ATP using
an untargeted UHPLC-QTOFMS-based metabolomics tguhnto identify which
cellular metabolism pathway, if any, is involvedarctigenin activity against NLRP3
inflammasome assembly in macrophages. The typi€aMS total ion current (TIC)
chromatograms of the cell samples in both poskive negative modes are shown in
Figure 4A. The QC samples were selected accordingotarity and intensity to
assess the repeatability and stability of the sysfehe results (Supplementary Figure
2) showed that the established method was repeatainl stable. There were 1169
peaks in the positive ion mode and 663 peaks inndgative ion mode. Principal
components analysis (PCA) was implemented to imyesst the metabolic changes
among the three groups. The normal group and tf&AJP group were completely
separated, and the arctigenin group was trendingrtts the normal group (Fig. 4B).
The metabolites potentially contributing to the g#nclassification were shown by
OPLS-DA (Fig. 4C). Variables with VIP >1.0 aftdvalue < 0.05 were regarded as
candidate metabolites. As shown in Supplementagurgi 3, 23 variables were
predicted by comparing the correct MS and MS/M$§rfrants with the metabolites
found through database searches. To further eathateffects of arctigenin on these
potential biomarkers, the relative peak areas ef2h metabolites to their respective

total integrated area of the spectra were invegtithand visualized by heatmap (Fig.
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4D). The results showed that the contents of 3labwdites were reversed by
arctigenin treatment (Fig. 4E). In the LPS/ATP grolrAO-relevant metabolites,
including palmityl-CoA, pyrophosphate, stearic agtkaroyl-CoA, stearoyl carnitine,
tetradecanoyl-CoA, oleic acid, and linoleic aciagrevelevated, while 5 of them were
reversed by arctigenin treatment. Fructose 6-plaispdnd glucose 6-phosphate were
elevated in the LPS/ATP group; however, arctigdrad no significant influence on
these metabolites. The metabolic network of thes¢ential biomarkers was
established and is displayed in Fig. 4F. Thesdteehighlight the fact that both FAO
and glycolysis were upregulated by LPS/ATP stimatgtwhile arctigenin selectively

downregulated FAO, in macrophages.

To further evaluate the effect of arctigenin on FA@e detected the level of
acetyl-CoA, which is mainly produced lffyoxidation of fatty acids, in THP-1 cells
and BMDMs (Fig. 5A and Supplementary Figure 4A)eTgroduction of acetyl-CoA
in THP-1 cells and BMDMs was higher after stimuatiwith LPS/ATP. Moreover,
arctigenin treatment (3, 10, and 30M) resulted in a significant reduction of
acetyl-CoA production and inhibited the palmitatéiced increase in the oxygen
consumption rate (OCR) in cultured THP-1 cells aBWDMs (Fig. 5B and
Supplementary Figure 4B). In contrast, the extiatagl acidification rate (ECAR)
remained constant whether arctigenin was presenbtoffFig. 5C and Supplementary
Figure 4C). Together, these results suggestedatbtigenin downregulated FAO, but

not glycolysis, in THP-1 cells and BMDMs.

3.5 Arctigenin disrupted NLRP3 inflammasome assembly in macrophages

depending on the downregulation of CPT1 expression

Previous studies have indicated that the knockb@RI'1, the rate-limiting enzyme

in FAO, can inhibit NLRP3 inflammasome activatibn To investigate the
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involvement of CPT1 in arctigenin-mediated inhitti of NLRP3 inflammasome
assembly in macrophages, we assessed the effeetstmfenin on the activity and
expression of CPT1. Figure 5D and SupplementaryrEigD show that the activity
of CPT1 in THP-1 cells and BMDMs did not changesafirctigenin treatment. The
CPT1 mRNA and protein expression levels (Fig. 5Bn& Supplementary Figure 4E,
F) were increased in LPS/ATP-stimulated THP-1 calld BMDMs; however, these
effects were suppressed by arctigenin (3, 14N To ascertain the role of CPT1 in
the response of macrophages to LPS/ATP, we creEt#1l cells overexpressing
CPTL1. The transfection efficiency of CPT1 plasmakwalidated by qPCR (Fig. 6A),
and the enhancement of FAO after CPT1 overexpressas assessed by detecting
the production of acetyl-CoA (Fig. 6B). CPT1 oveession drove NLRP3
inflammasome assembly and resulted in ASC oligaragan, enhanced caspase-1
activation, and IL-g cleavage (Fig. 6C-E) relative to the control plasnn
LPS/ATP-stimulated THP-1 cells. Moreover, the intuby effects of arctigenin on
NLRP3 inflammasome assembly, ASC oligomerizatioaspase-1 activation, and
IL-1B cleavage were almost completely reversed by tleesypression of CPT1 in
THP-1 cells compared to the controls. We, therefospeculate that the
downregulation of CPT1 expression to weaken FA@esponsible for the effect of

arctigenin on the prevention of NLRP3 inflammasamsembly in macrophages.

3.6 Arctigenin disrupted NLRP3 assembly through the inhibition of a-tubulin

acetylation via downregulating CPT1 expression

In FAO metabolism, fatty acifl oxidation is split stepwise into two-carbon fragnse
forming acetyl-Co&’. Acetyl-CoA is the major direct acetyl donor faresylation in
the biological systefl. The inhibition of a-tubulin acetylation has recently been

reported to mediate the spatial arrangement ofandtodria and cause the insufficient
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assembly of ASC with NLRP3 in the mitochondtiaTo further dissect how
arctigenin downregulates the expression of CPTidfloence the NLRP3 assembly in
macrophages, we measured the expressiamtabulin and acetylated-tubulin in
macrophages. As shown in Figure 7A, arctigeninl(8,and 3QuM) did not impact
the expression of total-tubulin; in contrast, it significantly inhibitedhé acetylation

of a-tubulin in LPS/ATP-challenged THP-1 cells.

Further, we performed immunofluorescence analysecetylatedo-tubulin proteins
and ASC in THP-1 cells. Of note, CPT1 overexprassstrongly enhanced the
acetylation ofu-tubulin, and dramatically weakened the inhibiteffect of arctigenin
(10 uM) on the expression of acetylatedubulin in THP-1 cells (Fig. 7B). The data
revealed that arctigenin reduced colocalizatiomvbeh acetylated-tubulin and ASC
(Fig. 7C). These findings show that arctigenin uljised NLRP3 assembly through
inhibition of o-tubulin acetylation in macrophages via downregogat CPT1

expression.

3.7 Downregulation of FAO contributed to the inhibitory effect of arctigenin on

NL RP3 inflammasome activation and tumorigenesisin mice with CAC

To determine whether the anti-CAC effect of aratige was linked to the
downregulation of CPT1-mediated FAO, we used AA®Oa vehicle to specifically
overexpress CPTL1 in the colons of CAC mice adnengst with either arctigenin (25
mg/kg) or vehicle for 15 weeks commencing the fiveek after AOM injection. The
transfection efficiency of AAV-CPT1 was validateg QPCR (Supplementary Figure
5A), and the enhancement of FAO after the overesgina of CPT1 was assessed by
detecting the production of acetyl-CoA (Supplemenfaigure 5B). The mice with
CPT1 overexpression had a more dramatic reductiosurvival (Fig. 8A), body
weight (Fig. 8B), and shortening of colon lengtig(BC). The number, load, and size

of the tumors in mice with CPT1 overexpression stmvstatistically significant
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increases compared with those in the vehicle grauge (Fig. 8D-F).
Histopathological examination revealed that thewslof the mice in the AOM/DSS
group and AOM/DSS with CPT1 overexpression groug laage adenocarcinomas
inside the mucosa. Also, the mice in the AOM/DSS #OM/DSS with CPT1
overexpression groups showed an inflammatory respamd crypt loss (Fig. 8G).
The numbers of CD68NLRP3 macrophages were significantly increased in the
AOM/DSS group and AOM/DSS with CPT1 overexpresgiooup (Fig. 8H). Figure
8l shows that CPT1 overexpression strongly increeéise expression of IL] while
also promotingu-tubulin acetylation and acetyl-CoA production iretcolon tissues
(Supplementary Figure 5B, C). As anticipated, gestin treatment was ineffective
against AOM/DSS-induced tumor progression, as asllagainst macrophage and
NLRP3 inflammasome activation, which demonstrateat the inhibitory effect of
arctigenin on NLRP3 inflammasome activation in cadomacrophages and CAC
disappeared with CPT1 overexpression in colon éissiositive correlations were
found between CPT1 mRNA expression and tumor nuntberor size, tumor load,
pathological score, and IBlexpression by Spearman’s correlation analysis. (Fig
A-E). Taken together, these results demonstrate afwigenin exerts an anti-CAC
effect primarily through the downregulation of CPE&kpression and consequent
NLRP3 inflammasome activation in colonic macroplsggand, thus, uncover the
critical role of CPT1 in inflammasome activationdathe progression of colon

carcinogenesis.
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4. Discussion

CRC is a devastating gastrointestinal cancer wigh morbidity and mortality >
Multiple risk factors, including an unhealthy diesmoking, obesity, and
environmental factors, can enhance the incidendeR&E. Among these risk factors,
chronic non-resolving inflammation in IBD individigahas been acknowledged to
contribute to the initiation and progression of CR@nd anti-inflammatory
interventions can help to prevent the developmén€AC>2. Arctigenin, a lignin
constituent isolated from Fructus Arctii, has begported to inhibit the proliferation
of various tumor cells, especially pancreatic camedls, and the growth of xenograft
tumors®*®  Our earlier studies proved that arctigenin cowltienuate colon
inflammation in mice with DSS-induced colffissuggesting its potential benefits for
the prevention and treatment of CRC. In the prestanty, we investigated the
anti-CAC potential of arctigenin and the underlymgchanism. The results showed
that orally administered arctigenin markedly intedi AOM/DSS-induced CAC in
mice, as evidenced by tumor number, size, burdemj &istopathological
examination.

The mechanism by which chronic inflammation dritasor development is
complex, and various proinflammatory cytokines niglay important roles. Among
them, IL-13 has attracted much attention. IB-tan propagate the initial mutations
and cause a cascade of inflammatory responsesssug damage by modulating the

function of dendritic cells, neutrophils, and TlsellL-18 can also rescue initiated

tumor cells from apoptosis and enable their pradtien, leading to a malignant
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phenotyp&. In this study, arctigenin significantly inhibitétle secretion of various
proinflammatory cytokines from the colonic macrogés of CAC model mice, with
the most active inhibition on ILAL secretion. This observation implies that the
anti-CAC effect of arctigenin might be linked toetimhibition of IL-13 secretion.
Furthermore, arctigenin was previously reportedrteeliorate DSS-induced colitis in
mice by down-regulating Th17 cell respoliseGiven that IL-B can induce the
differentiation and maintenance of Th17 cells ahd/Th17 expansion/activation can
recruit myeloid leukocytes to the colon and aggmaviaflammatioi*® further
studies are needed to validate the importance -df3lin arctigenin’s attenuation of

colitis.

IL-1B is well known to only be active in an inflammasedependent processed
and secreted forfh The formation of inflammasome might be triggetsddiverse
microorganisms and their products or by stressesasal signals that support the
autocatalytic cleavage of pro-caspase-1, whichctsvated on the inflammasome
platform, and subsequently cleaves the inactiveyssers of IL-B (31 kD) into their
mature secreted 17 kD forfn Interestingly, arctigenin did not affect the eegsion of
the precursors of IL{fl and caspase-1; however, it significantly redudex rhature
IL-13 and cleaved caspasedih vivo and in vitro. In macrophages, NLRP3
inflammasome activation is a two-step process. fits step is priming, which
usually controls the transcriptional synthesis efevant genes such as pro-I1g;1
NLRP3, and AS&. The second step is activation, which provokesasembly of
the NLRP3 inflammasoni& Pu et al. reported that arctigenin with the additof
LPS could inhibit the expression of NLRP3 protainTHP-1 cell§’. In contrast, our
results showed that arctigenin, added at 3 h &S stimulation, did not affect the
MRNA and protein expression of NLRP3, but signifiita impeded the formation of
ASC oligomerization as well as the process of NLRRBimmasome assembly. It is

likely that arctigenin directly interferes with tH¢LRP3 inflammasome assembly
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process in macrophages. Further, we investigatedetfect of arctigenin on the
NLRP3 inflammasome assembly process in murine noaeow-derived neutrophils.
The results showed that arctigenin decreased A$gorér formation and IL{1
production (Supplementary Figure 6). In the coloh€RC patient¥ and CAC mice,
the infiltration of macrophages is more obviousnttihat of neutrophils (data not
shown). We employed macrophages inravitro model to investigate the mechanism

by which arctigenin inhibited NLRP3 inflammasomsexsbly.

Several metabolic intermediates appear to be imeblwn the assembly of the
NLRP3 inflammasome in macrophages. A shift in oadarstanding of NLRP3
inflammasome assembly has occurred because of treligscoveries around the
metabolic reprogramming of macrophatfeAlong with the sensing of cell metabolic
changes, increased fatty acid oxidation, amino aeftlix, and glycolysis, have
recently emerged as additional critical activamfrinflammasome assemBfy*> The
NLRP3 inflammasome has been shown to sense mdtsbslich as palmitate, uric
acid, and cholesterol crystals, but it is inhibitegl ketone bodies produced during
metabolic fluf®. Metabolic reprogramming in macrophages appeamduide vital
energy and substrates supplement steps in NLRBabsshared by several stimuli,
including ATP and nigericin. In this study, we fauthat the levels of acetyl-CoA
were higher in response to LPS/ATP or LPS/palmiBS$& in THP-1 and BMDMs
compared to those in normal controls. The oxidatafnfatty acids generates
acetyl-CoA, which fuels NLRP3 inflammasome assembQuring NLRP3
inflammasome assembly, acetyl-CoA acts as an adenhgr fora-tubulin acetylation.
The acetylatedtubulin interacts with ASC to form oligomers andntributes the
assembly of the NLRP3 inflammasotheArctigenin and etomoxir were shown to
downregulate FAO, suppresstubulin acetylation, and eventually hinder NLRP3
inflammasome assembly in macrophages. FAO is @akdot energy homeostasis

and is regulated by CP%% Here, we employed CPT1 overexpression plasmid to

30



613
614
615
616
617
618

619
620
621
622
623
624
625
626

627

enhance the FAO in macrophages and demonstratedCBiBl-dependent FAO is
required for arctigenin’s inhibition of NLRP3 inftanasome assembly. The findings
obtained from ouin vitro studies were verified in AOM/DSS-induced CAC mice.
The inhibitory effect of arctigenin on the expressiof CPT1 was positively
correlated with the reduction of tumor size, tumamber, and tumor burden in CAC

mice.

In conclusion, the results of this study confirne hrotective effect of arctigenin
against CAC in mice through inhibiting inflammatiomhe action mechanism of
arctigenin involves FAO-dependent stunting of NLRRfBammasome assembly and
activation, thus leading to decreased [Lsecretion by macrophages. Furthermore,
CPT1-mediated FAO was demonstrated to be a potguiti@macologic target of
NLRP3 activation and CAC. The findings presentetklhmmay help guide decisions
regarding the use of arctigenin as an anti-inflatanyaagent in IBD patients to

reduce the risk of CAC.
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798 Figure 1. Effect of arctigenin on colitis-associated cancer induced by AOM/DSS
799 in mice. (A) Schematic of the AOM/DSS model of colitis-assted cancer. (B)
800 Percent survival rate (d, days). (C) Percent wedtdnge. (D) The length of the
801 mouse colons. (E) The number of tumors in the mao$en tissues. (F) The size of
802 the tumors in the mouse colon tissues. (G) The tdoaw in the mouse colon tissues.
803 (H) The histological changes of the colon tissuesrewexamined by using
804 hematoxylin-eosin staining (Scale bar: B®). (1) Infiltration by PCNA cells was
805 evaluated by immunohistochemistry. The positivéscate dyed in brown (Scale bar:
806 50 um). (J) Infiltration by CD68cells was evaluated by immunohistochemistry. The
807 positive cells are dyed in brown (Scale bar: 50 uDgta are presented as mean +
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S.E.M. n = 6-8"p < 0.05 and”p < 0.01vs. Normal group:p < 0.05 and p < 0.01vs.
AOM/DSS group.

Figure 2. Effect of arctigenin on thelevels of inflammatory cytokines and NL RP3

inflammasome activation in the colons of mice with colitis-associated cancer.

(A) The mRNA levels of TNFe, IL-17A, INOS, COX2, IL-B, and IL-6 were
detected by g-PCR assay. (B) The levels of TNH--17A, NO, COX2, IL-B, and
IL-6 were measured by ELISA. (C) The infiltratioi GD68" NLRP3 cells in the
mouse colon tissues was evaluated by immunofluereschistochemistry (Scale bars:
100 pum). (D) The protein levels of NLRP3, ASC, paspase 1, caspase 1, pro-fi,-1
and IL-13 were examined by western blot. Data are presexgedean + S.E.M. n = 6.

*n < 0.05 and™p < 0.01vs. Normal group; p < 0.05 and p < 0.01vs. AOM/DSS

group.

Figure 3. Effect of arctigenin on NLRP3 inflammasome activation in
macrophages. (A) THP-1 cells were treated with arctigenin (013,3, 10, 30, or 100
uM) for 24 h. Cell viability was detected by MTT ags (B) The THP-1 cells were
treated with arctigenin (0.3, 1, 3, 10, ord@) for 24 h. The proportions of apoptotic
cells were detected by using Annexin V-FITC/PI gsmad FACS analysis. (C, D) The
THP-1 cells were primed with PMA (50 ng/mL), stiratdd by LPS (Zug/mL), then
treated with or without arctigenin (3, 10, or @) for 3 h, and finally mixed with
ATP (5 mM). The levels IL-f and IL-18 in the supernatants were detected bysBLI
(E) The protein expression of pro-casapsel, cashdtelfp, and ASC in THP-1 cells
was detected by western blot. (F, G) The interacbhetween NLRP3, ASC, and
caspase-1 in THP-1 cells was measured by using mopracipitation and
immunofluorescence analysis (Scale bars: 20 um). Tl mMRNA expression of
NLRP3 in THP-1 cells was measured by g-PCR assesuls are expressed as the

means + S.E.M. from three independent experimépts: 0.05 and™p < 0.01vs.
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Normal group, p < 0.05 and p < 0.01vs. LPS/ATP-treated group.

Figure 4. Effect of arctigenin on the metabolism of macrophages during NLRP3
inflammasome assembly. THP-1 cells were primed with PMA (50 ng/mL),
stimulated with LPS (2uig/mL), treated with or without arctigenin (3, 1@, 30 uM)

for 3 h, and then mixed with ATP (5 mM). The metigties of the cells were extracted
with extraction solvent (methanol: acetonitrile:tera 2:2:1 v/v/v). The extract was
taken for the UHPLC-QTOF-MS analysis using a UHP&¢stem (1290, Agilent
Technologies) with a UPLC BEH Amide column (lufm 2.1*100 mm, Waters)
coupled to TripleTOF 6600 (Q-TOF, AB Sciex). (A) &hepresentative total ion
current (TIC) chromatogram of serum samples in B8 positive ion mode and
negative ion mode. (B) The PCA plots of cell sarapdbtained from the normal
group, model group, and arctigenin (i®) group. (C) S-plots generated from the
OPLS-DA model between the normal group and modaligin the ESI positive ion
mode and negative ion mode. (D) Heatmap based enelative abundance of 25
metabolites. (E) The Venn plot of metabolites ie ttormal group, model group, and
arctigenin group. The value in the middle represehe number of the metabolites
changed in the 3 groups. (F) Pathway analysis letwike normal group and the
model group, and the model group and the arctiggranp. Each shape indicates one
metabolic pathway. The color and size of the shagmesent the effects of arctigenin
on metabolism, relative to the model group. Thendlmce of metabolites was
analyzed by Student's t-test <P.05) based on the variable importance in the
projection in an orthogonal partial least squaseriininant analysis. The Y-axis is the
value of negative In(P) from pathway enrichmentlgsia. The X-axis is the value of
impact corresponding to a differentially expresaeetabolite to the total metabolites
on a pathway. Normal: normal control group; ModePS /ATP-treated group;

Arctigenin: arctigenin (1@M)-treated group.
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Figure 5. Effect of arctigenin on FAO during NL RP3 inflammasome assembly in
macrophages. THP-1 cells were primed with PMA (50 ng/mL), stilated with LPS
(2 ng/mL), treated with or without arctigenin (3, 1@ @M) for 3 h, and then mixed
with ATP (5 mM). (A) The acetyl-coenzyme A leveltine THP-1 cells was detected
using an acetyl-coenzyme A assay kit. (B, C) OCR BE&AR of THP-1 cells were
monitored by Seahorse XFe96 analyzer. (D) The iagtdf CPT1 in THP-1 cells was
detected by colorimetry. (E, F) The mRNA and pmo&xpressions of CPT1 in THP-1
cells were detected by g-PCR and western blottimgpectively. Results are
expressed as the means + S.E.M. from three indepératperiments’p < 0.05 and

b < 0.01vs. Normal group, p < 0.05 and’ p < 0.01vs. LPS/ATP-treated group.

Figure 6. Effect of CPT1 overexpression on the disruption of NLRP3
inflammasome assembly by arctigenin in macrophages. THP-1 cells were primed
with PMA (50 ng/mL), and transfected with CPT1 phéd or normal control plasmid,
followed by incubation with LPS (2g/mL) for 3 h. The cells were then treated with
or without arctigenin (1QuM) for 3 h, and finally mixed with ATP (5 mM). (A)
THP-1 cells were transfected with CPT1 plasmid kamk control vector, and the
MRNA expression of CPT1 in THP-1 cells was detedigdising q-PCR. (B) The
level of acetyl-coenzyme A in the THP-1 cells wasedted using an acetyl-coenzyme
A assay kit. (C) ASC oligomerization in THP-1 celwas detected by
immunofluorescence (Scale bars: 20 um). (D) pLekpression in the cell lysates was
detected by ELISA. (E) The protein expressionslefwed caspase-1 and 1B-fvere
detected by western blot. Results are expressdtieameans + S.E.M. from three

independent experiment&p < 0.01vs. Normal group, p < 0.05 and p < 0.01vs.

LPS/ATP-treated group® < 0.01vs. arctigenin (1QuM)-treated group.
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Figure 7. Effect of arctigenin on a-tubulin acetylation during NLRP3
inflammasome activation in macrophages. THP-1 cells were primed with PMA (50
ng/mL), stimulated with LPS (gg/mL), treated with or without arctigenin (3, 1@ 3
uM) for 3 h, and then mixed with ATP (5 mM). (A) Thmotein expressions of
a-tubulin and acetylated-tubulin in THP-1 cells were detected by westerot.b{B)
THP-1 cells were primed with PMA (50 ng/mL) andnséected with CPT1 plasmid
or normal control plasmid, followed by incubatiomtwLPS (2ug/mL) for 3 h. The
cells were then treated with or without arctigefdn10, or 3QuM) for 3 h, and finally
mixed with ATP (5 mM). The effect of CPT1 overexggmn on the inhibition of
a-tubulin acetylation by arctigenin in THP-1 cellasvexamined. (C) The interaction
between acetylatedo-tubulin and ASC in THP-1 cells was evaluated by
immunofluorescence analyses (Scale bars: 20 pngulReare expressed as the

means + S.E.M. from three independent experiméfs: 0.01vs. Normal group, p
< 0.05 and”p < 0.01vs. LPS/ATP-treated groufp < 0.01vs. arctigenin (10uM)

-treated group.

Figure 8. Effect of CPT1 overexpression on the inhibitory effect of arctigenin on
CAC and inflammasome activation in the colons of mice. (A) Percent survival rate
(d, days) (B) Percent weight change. (C) The lemdtthe mouse colons. (D) The
number of tumors in the mouse colon tissues. () dike of the tumors in the mouse
colon tissues. (F) The tumor load in the mouse rcaissues. (G) The histological
changes of the colons were detected using hematexgtin staining (Scale bar: 50
um) (H) Infiltration by CD68 NLRP3 cells was evaluated by immunofluorescence
histochemistry (Scale bars: 100 um). (I) The expogsof IL-18, in the mouse colon
tissues was detected by ELISA. Results are expteasdhe means + S.E.M. from
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three independent experiments. n=3§B< 0.05,"p < 0.01vs. Normal group: p <

0.05,” p < 0.01vs. AOM/DSS group®¥p < 0.01vs. arctigenin (25 mg/kg) group.

Figure 9. Correlation of CPT1 expression with CAC severity and IL-1p level in
colon tissues of mice treated with arctigenin. (A) Correlation between CPT1
expression and tumor number. (B) Correlation betw€BT1 expression and tumor
sizes. (C) Correlation between CPT1 expression tantbr load. (D) Correlation
between CPT1 expression and histological scores.C@relation between CPT1
expression and ILfllevel. R = Spearman'’s rank correlation coefficiénP-value <

0.05 was considered to show a significant diffeegmc= 5-8.
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1. Oral arctigenin can effectively prevent colitis associated cancer (CAC) in mice;

2. Arctigenin selectively downregulates IL-1B expression in the colon of CAC mice;
3. Arctigenin disrupts NLRP3 inflammasome assembly to downregulate IL-1p
expression;

4. Arctigenin functions by inhibiting fatty acid oxidation via targeting at CPT 1.
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