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The expression profile of miRNAs and their function in

condyloma acuminatum (CA) remains unknown. In this study,

we aimed to detect the effects of miR-143 and miR-145, the

most downregulated in CA samples using high-throughput

sequencing, on cell proliferation and apoptosis, to determine a

novel therapeutic target for CA recurrence. RT-qPCR was used

to validate the lower expression of miR-143 and miR-145 in

a larger size of CA samples, and the expression of NRAS in

CA samples was significantly higher than self-controls as

determined by western blotting assay. Luciferase assay was

performed to confirm that miR-143 or miR-145 targeted NRAS

directly. Transduction of LV-pre-miR-143 or LV-pre-miR-145 to

human papilloma virus (HPV)-infected SiHa cells led to reduced

proliferation, greater apoptosis and inhibition of expression of

NRAS, PI3 K p110a and p-AKT. However, knockout of miR-143

or miR-145 in human epidermal keratinocytes by delivery of

CRISPR/CAS9-gRNA for target miRNAs protected cells from

apoptosis and upregulated expression of target genes as

described above. MiR-143 and miR-145 sensitized cells to nutlin-

3a, a p53 activator and MDM2 antagonist, while their loss

protected cells from the stress of nutlin-3a. Furthermore, siRNA

targeting NRAS showed similar effects on proliferation and

apoptosis as miR-143 or miR-145. Taken together, our results

suggest that loss of miR-143 or miR-145 in CA protects HPV-

infected cells from apoptosis induced by environmental stress, in

addition to promoting cellular proliferation and inhibiting

apoptosis by targeting NRAS/PI3 K/ATK. Restoration of miR-

143 or miR-145 might provide an applicable and novel approach

to block the recurrence and progression of CA.
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1. Introduction

Condyloma acuminatum (CA), most frequently caused by human papilloma virus (HPV) types 6b and

11, is one of the most common sexually transmitted diseases. It is characterized by abnormal

hyperproliferation and less apoptosis, which results in high recurrence and necessitates repeated

therapy [1]. Therefore, it is important to elucidate the mechanism of CA progression and recurrence,

eventually to develop approaches to control this disease.

MicroRNAs (miRNAs), small noncoding RNA molecules of 20–25 nucleotides in length, function in

post-translational regulation of gene expression via base-pairing with complementary sequences with

mRNA molecules [2]. They have been recognized as important gene regulators during past decades,

participating in most investigated biological processes including development [3], organogenesis [4],

carcinogenesis [5], apoptosis [6] and cell proliferation [7].

Studies on the relationship between HPV and miRNAs have mainly focused on the expression

changes of miRNAs of intraepithelial neoplasia and cervical cancer caused by high-risk HPV and the

regulatory mechanism on HPV-mediated carcinogenesis [8–10]. On the one hand, HPV E6 and E7

oncoproteins deregulate the expression of the miR-15/16 cluster, miR-17-92 family, miR-21, miR-23b,

miR-34a and miR-106b/93/25 cluster via the E6-p53 and E7-pRb pathways [11–16]. On the other

hand, differential cellular miRNAs may influence the expression of papillomavirus genes in a

differentiation-dependent manner by targeting viral RNA transcripts [17,18]. Although aberrantly

expressed miRNAs in human cervical cancer and head and neck squamous cell carcinoma (HNSCC)

are well documented [19,20], the expression profile of miRNAs and the function of candidate miRNAs

in CA remain largely unknown.

In the present study, we screened the candidate miRNAs involved in the regulation of CA

progression. Then we identified the function of miR-143 and miR-145, the lowest expressed ones in

the context of CA, on cellular proliferation and apoptosis. Herein, we report that NRAS was targeted

by miR-143 or miR-145 for repression. We showed that repression of NRAS by miR-143 or miR-145

could promote more apoptosis, induced by a p53 activator and MDM2 antagonist, nutlin-3a.

Furthermore, inhibition of these target miRNAs promoted cellular proliferation, inhibited apoptosis

and showed resistance to nutlin-3a. These results demonstrate that miR-143 and miR-145 are

decreased in CA, and they play crucial roles in cellular proliferation and apoptosis in the face of stress

signals by targeting NRAS.
2. Material and methods
2.1. Patients and study approval
Five pairs of HPV6b-positive CA samples and adjacent tissues were used for miRNA microarray assay

for candidate miRNA selection. Another 60 cases of CA specimens and 20 cases of HPV-negative skin or

foreskin tissues were collected for further validation using quantitative real-time PCR (qRT-PCR).

Among these, nine pairs of CA samples and adjacent tissues were used for western blotting assay to

detect the expression of target genes. The HPV genotyping was performed using a HPV GenoArray

Test Kit (Hybribo, China) following the manufacturer’s protocol. The clinical features of 60 cases of

CA are listed in table 1.
2.2. miRNA microarray assay
Total RNA was extracted from HPV6b-positive CA tissues and HPV-negative foreskin tissues using

RNAisoTM PLUS (TaKaRa, China) following the manufacturer’s protocol. The miRNA microarray

assays were conducted by a service provider (LC Sciences, China). In brief, the assays were performed

on 5 mg of total RNA samples from each negative control or HPV6b-positive CA specimen. The small

RNAs were 30-extended with a polyadenylate tail, using polyadenylate [poly (A)] polymerase and

then ligated to an oligonucleotide tag for later staining with Cy5. Hybridization was performed

overnight on a mParaFlo microfluidic chip using a microcirculation pump. After hybridization, images

were collected and quantified. The microarray data were submitted to an ArrayExpress database with

the accession number A-MEXP-2322.



Table 1. Clinical features of 60 cases of CA. Note: this includes one case with diabetes and three cases with kidney transplantation.

clinical features number

sexuality

male 33

female 27

age

, 40 years 41

� 40 years 19

genotype of HPV

HPV 6b 25

HPV 11 24

mixed infection 11

recurrence rate

incipience 32

recurrence 28

recurrence � 6 10

course of disease

, 3 months 37

� 3 months 23

lesional location

foreskin 25

anus 17

labia/perineum 18

concomitant disease

yes 4

no 56
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2.3. Cell culture and reagent
Human epidermal keratinocytes (HEKs) (Pansheon Company, China) were maintained for up to five

passages with defined keratinocyte serum-free media (Invitrogen, USA). HPV16-positive human

cervical carcinoma cell line SiHa and human embryonic kidney cell line 293 T were purchased from

the Shanghai Institute of Cell Biology of the Chinese Academy of Sciences (Shanghai, China).

The latter two cell lines were routinely cultured in Dulbecco’s modified Eagle’s medium

(Hyclone, USA) with 10% heat-inactivated fetal bovine serum (Invitrogen, USA) and 1% penicillin/

streptomycin (Invitrogen). All cells were grown in a humidified (378C, 5% CO2) incubator.

Also, miRNA mimics for miR-143 or miR-145, or mimic control, and siRNAs for NRAS or siRNA

control, were purchased from RiboBio (China). Nutlin-3a, a p53 activator and MDM2 antagonist,

and puromycin were purchased from MedChemExpress Company (China). HEKs or SiHa cells were

co-treated with 20 mg ml21 or 40 mg ml21 nutlin-3a for an appropriate time after transfection

or transduction.
2.4. 30-UTR Luciferase reporter assays
A wild or mutant NRAS part-length 30-UTR luciferase reporter construct for miR-143 or miR-145 was

made by synthesizing and cloned into the XbaI site of GV27 construct (Genechem, China). The target

sequences and mutant sites are shown in figure 1a. Next, 293 T cells were transfected in 96-well plates

by using Lipofectamine 2000 (Invitrogen) with the wild or mutant luciferase reporters (100 ng ml21)
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Figure 1. miR-143 and miR-145 target the 30-UTR of NRAS. (a) Sequences show the predicted target site of 30-UTR of NRAS for
miR-143 or miR-145. Mutations to disrupt miR-143 or miR-145 interaction with the 30-UTR are shown. (b) The sequencing results of
wild-type or mutant versions of the predicted miR-143 or miR-145 binding sequences in the NRAS 30-UTR. (c) Luciferase assays
results are shown with the wild- and mutant-type NRAS 30-UTR. Data were mean+ s.d. from at least three experiments.
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and 20 nM miRNA mimics for miR-143 or miR-145, or mimic control. Assays were performed using the

dual-luciferase reporter system (Promega, USA) at 48 h post-transfection (hpt). The ratio of the activities

of Renilla luciferase over those of firefly luciferase in each well was used as a measure of total reporter

activation. The results are averages of data from three independent experiments, assayed in triplicate.

2.5. Construction of miRNA overexpressing lentiviral vectors and lentiviral transduction on SiHa cells
The lentiviral vectors overexpressing miR-143 or miR-145 were constructed by the GeneChem Company

in China (see electronic supplementary material, figure S1), named LV-pre-miR-143 or LV-pre-miR-145.

SiHa cells were sequentially infected with lentiviral particles at a multiplicity of infection (MOI) of 10 in

the presence of 5 mg ml21 of polybrene (Sigma, USA). The cells were treated with 0 or 40 mg ml21 of

nutlin-3a at 48 hpt for another 24 h, and then harvested for further assays.

2.6. Construction of CRISPR/CAS9 plasmids delivering gRNA for miRNAs and their transfection
on HEKs

The CRISPR/CAS9 plasmids delivering gRNA for miR-143-3p, miR-143-5p, miR-145-3p or miR-145-5p

were constructed by the ViGene Company of China (see electronic supplementary material, figure S2).

The double plasmids carrying gRNA-miR143-3p and gRNA-miR-143-5p, or gRNA-miR-145-3p and

gRNA-miR-145-5p, were both transfected into HEKs simultaneously using FuGENE HD Transfection

Reagent (Promega) according to the manufacturer’s protocol. The empty vector was used as a

negative control. Cells were treated with 0 or 20 mg ml21 of nutlin-3a and 5 mg ml21 puromycin at

48 hpt, and then harvested for further assays at 72 hpt.

2.7. Quantitative real-time PCR
Total RNA was isolated from 60 cases of CA tissues, 20 negative control cases and cells of transfected or

transduced groups, using RNAisoTM PLUS (TaKaRa), following the manufacturer’s protocol. For mRNA,

RNA was subjected to reverse transcription using the reagent kit (TaKaRa), and a Mir-XTM miRNA First-
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Strand Synthesis Kit (Clontech) was used to produce first-strand cDNA for miRNAs. The amplification

reactions were carried out in a 20-ml reaction volume, containing 10 ml of 2 � SYBRw Premix Ex TaqTM

and 0.4 ml of 50 � ROX reference dye (TaKaRa). Primers for target mRNAs and miRNAs as well as

the internal controls of GAPDH or RNU6 were synthesized by TaKaRa or RiboBio. The DCt data were

collected automatically. DDCt was calculated by DDCt ¼ average DCt of the negative control group

–DCt of the treated group. The relative expression for a target gene was calculated using 22DDCt. Each

treatment was performed in triplicate, and all experiments were repeated three times.

2.8. In vitro cellular viability assay, apoptosis assay
SiHa cells or HEK cells, cultured in 96-well plates at a concentration of 4.0 � 103/well or 8.0 � 103/well,

were transduced or transfected following the above steps. Then they were treated with or without

40 mg ml21 or 20 mg ml21 of nutlin-3a for one to five days. Cellular viability assay was detected using

water-soluble tetrazolium 1 (WST-1) assay at each time point according to the protocol. Each

treatment was performed in quadruplicate, and the experiment was repeated three times.

At 72 hpt, the cells in 6-well plates were harvested and resuspended in 100 ml of 1 � Annexin-V

binding buffer. The supernatant was incubated with 5 ml of phycoerythrin (PE)-conjugated Annexin V

(BD Pharmingen, USA) and 5 ml of 7-amino-actinomycin (7-AAD, BD Pharmingen) for 15 min at room

temperature in the dark, and then 400 ml of 1 � buffer was added to each tube. Flow cytometric

analysis (BD FACSCalibur, BD Biosciences, USA) was performed within 1 h of staining. Each

experiment was performed with at least three biological replicates.

2.9. Western blot assay
Total protein was extracted in radioimmunoprecipitation assay (RIPA) buffer (Sigma) containing 1 �
Halt Protease and phosphatase inhibitors (Thermo Scientific, USA). For western blotting, equal

amounts of total proteins were electrophoresed by SDS-PAGE and then transferred to polyvinylidene

difluoride membranes. The antibody for NRAS (ab77392) was purchased from Abcam (USA), and

antibodies for AKT (#9272), pAKT-ser473 (#4060), PI3 K-p110a (#4249) and PI3 K-p110b (#3011) were

purchased from Cell Signaling (USA). The members were probed with primary antibodies overnight

at 48C. Following three washes with tris-buffered saline with Tween (TBS/T) buffer, the membranes

were incubated with horseradish peroxidase-conjugated anti-rabbit or anti-goat immunoglobulin G

(IgG) for 1 h at room temperature. EZ-ECL (Beit-Haemek, Israel) was subsequently used for

visualization of the bands. The membranes were stripped and probed with the GAPDH monoclonal

antibody (KangChen, China) as the control. Changes in protein levels were measured relative to the

internal control GAPDH level, and fold changes were obtained relative to values for the respective

negative control (NC). All experiments were repeated at least three times.

2.10. Statistics
The results were expressed as mean+ s.d. One-way analysis of variance followed by the Dunnett-t and

SNK-q tests was used to assess significant differences among the groups; p , 0.05 was considered to be

statistically significant.
3. Results
3.1. Attenuated expression of miR-143 and miR-145 in CA specimens and HPV-infected cells
Differential expression profiling data in the present study are shown in figure 2a. Levels of miR-145, miR-

143, miR-214, miR-199a-3p and miR-125b were significantly lower in CA specimens than in adjacent

tissues ( p , 0.01), using three-fold expression difference and a positive signal greater than 500 as a

cut-off level. In the further validation assay using qRT-PCR, it was confirmed that miR-143 and miR-

145 were the two most downregulated miRNAs in the CA group compared with the control group

(figure 2b,c, p , 0.0001). Furthermore, their expression was inversely related to the course of the

disease and the recurrence rate (figure 2d–f, p , 0.0001), whereas no noticeable differences of miR-143

or miR-145 expression were identified between the CA group and the control group in terms of

gender, age, genotype of HPV or lesion location (data not shown).
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Figure 2. miR-143 and miR-145 expression in CA samples. (a) Microarray data of miRNAs in CA samples compared with self-controls
(n ¼ 5 pairs). (b) Expression of candidate miRNAs were detected for CA samples in a larger scale, using qRT-PCR (n ¼ 60 in CA
samples and n ¼ 20 in control group). (c) Expression of miR-143 or miR-145 in CA samples using qRT-PCR. Data were expressed as
log2 values (n ¼ 60 in CA samples and n ¼ 20 in control group). (d – f ) Inverse relationships between expression of miR-143 or
miR-145 and course of disease or recurrence rate were revealed.
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To evaluate the probable effects of miR-143 or miR-145 on CA progression, we detected the

expression of candidate miRNAs in SiHa cells and HEKs. As shown in the electronic supplementary

material, figure S3A, miR-143 and miR-145 expression was significantly lower in SiHa cells than in

HEKs. Therefore, we chose SiHa cells and HEKs as the model cells for further study.
3.2. miR-143 and miR-145 directly target the 30-UTR of NRAS
To elucidate the underlying mechanism by which miR-143 or miR-145 participate in CA progression, we

explored their targets by using TargetScan v. 6.2 algorithms [21], miRanda algorithms [22] and miRDB

algorithms [23]. To further reduce the false target genes in the analysis, co-predicted target genes by at
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least two of the three datasets were used for subsequent functional analysis of mRNA targets. Our

analysis revealed that NRAS emerged as putative targets of miR-143 or miR-145, based on the

predicted results in silico.

To confirm the relationships between miR-143 or miR-145 and NRAS, we first examined the protein

levels of NRAS in CA and adjacent tissues. The results showed higher levels of NRAS protein with a

2.39+ 1.10-fold increase in CA samples compared with that in self-controls (figure 3a,b, p ¼ 0.0016),

whereas the expression of miR-143 or miR-145 decreased 3.26+0.58- or 4.05+1.14-fold of log2

values (figure 3c, p , 0.0001). Furthermore, we also measured protein expression changes of NRAS in

SiHa cells transduced with LV-pre-miR-143 or LV-pre-miR-145. We found that miR-143 or miR-145

reduced the expression of NRAS. In addition, we knocked out endogenous miR-143 or miR-145 in

HEKs using CRISPR/CAS9 delivery, and observed an increase in protein levels of the target gene

(figures 4a and 5a, p , 0.05).

Next, we carried out dual luciferase reporter assay to verify the relationship between miR-143 or

miR-145 and NRAS. The sequencing results of wild-type or mutant versions of the predicted

miR-143 or miR-145 binding sequences in the NRAS 30-UTR are shown in figure 1b. Then they were

co-transfected with miR-143 or miR-145 mimics or mimic control into 293 T cells. Luciferase assays

were performed at 48 hpt. We found that NRAS 30-UTR luciferase reporter activity was repressed to

0.56+ 0.06 and 0.49+ 0.14 by miR-143 and miR-145, respectively (figure 1c, p ¼ 0.0002 and p ¼
0.0030). We mutated the specific site suspected to be targeted by miR-143 or miR-145 and these

mutant 30UTR reporters were no longer repressed by miR-143 or miR-145 (figure 1c). Based on the

combined immunoblot data and the NRAS 30-UTR luciferase data, it is suggested that miR-143 or

miR-145 targets NRAS directly.

3.3. Repression of NRAS results in lower expression of the NRAS/PI3 K/AKT pathway in HPV-
infective cells in response to nutlin-3a treatment

Previously, it has been shown that the NRAS/PI3 K/AKT pathway usually has an anti-apoptotic role in

promoting cellular proliferation, partly due to AKT-dependent stabilization of MDM2 [24]. Inhibition of

the PI3 K/AKT pathway sensitized cells to nutlin-3a, an MDM2 antagonist and p53 activator [25]. We
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hypothesized that miR-143 or miR-145 might repress NRAS expression to inhibit the following cascade

signal pathway to play their anti-proliferative and proapoptotic roles. We transduced LV-pre-miR-143 or

LV-pre-miR-145 into SiHa cells and measured protein expression changes in NRAS and the following

markers of PI3 K p110a, PI3 K-p110b, p-AKT and AKT. As shown in the electronic supplementary

material, figure S3B, the level of miR-143 or miR-145 increased sharply in SiHa cells transduced with

LV-pre-miR-143 or LV-pre-miR-145 compared with LV-neg ( p , 0.0001). We found that miR-143

and miR-145 reduced expression of NRAS, PI3 K p110a and p-AKT; however, variable changes of

PI3 K-p110b and no change of AKT were observed. In addition, we found that nutlin-3a reduced

expression of NRAS, PI3 K p110a and p-AKT in cells transduced with LV-neg, LV-pre-miR-143 and

LV-pre-miR-145, especially in the latter two groups (figure 4a, p , 0.05). These data suggest that

nutlin-3a induces anti-proliferation and apoptosis partly due to inhibition of NRAS/PI3 K/AKT, and

inhibition of NRAS/PI3 K/AKT by miR-143 or miR-145 sensitized HPV-infected cells to treatment of

nutlin-3a. Similar results were observed using short interfering RNAs (siRNAs) that directly target

NRAS (figure 4b, p , 0.05).

3.4. Repression of miR-143 or miR-145 results in increased levels of the NRAS/PI3 K/AKT
pathway expression in HEKs in response to nutlin-3a treatment

In addition to introducing miR-143 or miR-145 to SiHa cells, we knocked out endogenous miR-143 or

miR-145 in primary HEKs using CRISPR/CAS9 delivery. After transfection of double CRISPR/CAS9-

gRNAs for miR-143 or miR-145, the expression of miR-143 or miR-145 was underdetermined

(electronic supplementary material, figure S3C), while NRAS expression at both transcriptional and

protein levels was increased markedly (electronic supplementary material, figure S3D, p ¼ 0.0003 and

p , 0.0001). In HEKs with knockout of miR-143 or miR-145, we observed an increase in protein levels

of NRAS, PI3 K p110a and p-AKT compared with the negative control. Furthermore, in the presence

of knockout of miR-143 or miR-145, nutlin-3a mediated inhibition of NRAS, and following markers
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were obviously increased (figure 5, p , 0.05), suggesting that loss of miR-143 or miR-145 protects cells

from the stress of nutlin-3a.
3.5. Repression of NRAS plays an anti-proliferative and proapoptotic role in HPV-infective cells
in response to nutlin-3a treatment

WST-1 assay was performed to investigate the role of miR-143 or miR-145 on cell viability. As shown in

figure 6a, overexpression of miR-143 or miR-145 in SiHa cells slightly suppressed cell proliferation ( p ,

0.05). We also found that an increase of miR-143 and miR-145 significantly inhibited proliferation of SiHa

cells compared with the LV-neg control under the stress of 40 mg ml21 nutlin-3a ( p , 0.05). We analysed

apoptosis using flow cytometry and staining cells with Annexin V-PE and 7-AAD. Overexpression of

miR-143 or miR-145 resulted in a slightly increased population of apoptotic cells of SiHa cells

(figure 7a,b, p ¼ 0.0117 and p ¼ 0.0078). However, 15.47+3.32% of apoptotic and dead SiHa cells

remained in LV-neg group after treatment with 40 mg ml21 nutlin-3a, while in the cells transduced

with LV-pre-miR-143 or LV-pre-miR-145, we observed 40.23+ 3.87% or 38.27+6.12% in the

per cent of apoptotic and dead cells (figure 7a,b, p ¼ 0.0011 and p ¼ 0.0048). In addition, we observed

a 9.53+2.55% increase in the per cent of apoptotic cells induced by nutlin-3a (figure 7a–c, p ¼
0.0085). However, in the cells transduced with LV-pre-miR-143 or LV-pre-miR145, the increase of
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apoptotic cells obviously rose to 28.67+3.40% or 25.60+ 4.16% (figure 7a–c, p ¼ 0.0014 and p ¼ 0.0047).

Cells transfected with siRNAs to repress NRAS showed a similar sensibility to nutlin-3a-induced anti-

proliferation and apoptosis (figures 6b and 7d–f ).
3.6. Repression of miR-143 or miR-145 plays a role in promoting cellular proliferation and anti-
apoptosis in HEKs in response to nutlin-3a treatment

Additionally, we sought to determine changes in cellular proliferation and apoptosis in HEKs when miR-

143 or miR-145 was knocked out, and found that loss of miR-143 or miR-145 promoted proliferation of

HEKs whether or not this was in response to anti-proliferation of 20 mg ml21 nutlin-3a (figure 8a, p ,

0.05). At 72 h after delivery of the CRISPR/CAS9 for miR-143 or miR-145 into HEKs, flow cytometry

assays were also performed. The average per cent of apoptotic and dead cells in the control group was

25.07+2.87%, while that in the latter two groups was 13.63+1.96% and 15.33+1.40%, respectively

(figure 8b,c, p ¼ 0.0047 and p ¼ 0.0062). Furthermore, when treated with 20 mg ml21 of nutlin-3a, the

average per cent of apoptotic and dead cells decreased from 48.10+4.25% in the control HEKs to

26.43+1.97% or 27.20+3.62% in the HEKs with knockout of miR-143 or miR-145 (figure 8b,c, p ¼
0.0013 and p ¼ 0.0029). Furthermore, in the HEKs with knockout of miR-143 or miR145, the increase

of apoptotic cells induced by nutlin-3a markedly dropped from 23.03+3.15% to 12.80+2.98% or
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11.87+5.01% (figure 8b–d, p ¼ 0.0150 and p ¼ 0.0308). Collectively, these data provide sufficient

experimental evidence that miR-143 and miR-145 perform an anti-proliferative and proapoptotic role in

cells that highly expressed miR-143 or miR-145, and sensitize cells to the stress of nutlin-3a.
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4. Discussion

CA is biologically characterized by abnormal cell proliferation and apoptosis in HPV-infected

individuals, seldom undergoing malignant transformation [1].

In previous documents, studies on miRNA signatures related to HPV infection mainly focused on

cervical cancer caused by high-risk HPV and reported more variable results [17–20]. As early as 2012,

a set of HPV core miRNAs, including the miR-15a/miR-16/miR-195/miR-497 family, miR-143/miR-

145 and miR-106-363 clusters, were identified in HPV þ HNSCC, which were more similar to HPV þ
cervical SCC (CSCC) than to HPV - HNSCC [20]. Both high-risk HPV (hrHPV) E6 and E7

oncoproteins can influence expression of cellular miRNAs through their effects on transcription

factors, such as p53, c-Myc and E2F [11,26,27]. Recently, HPV16 E6 has been shown to suppress miR-

23b expression in CSCC through DNA methylation of the host gene C9orf3 [28]. In addition to the

effect of HPV16 E6 on miRNA expression, HPV8 E6 especially downregulates CCTTA/enhancer-

binding protein a (C/EBPa) at the transcriptional level, which can directly bind the miR-203 gene

within its hairpin region, and further suppress the miR-203 transcription [29].

With regard to miR-143/145, cervical cancer cells expressed no or very little miR-143/145 clustering;

moreover, reduced miR-143/145 expression is common in other tumour types unrelated to HPV

infection. They have been reported to act as tumour suppressors, and their overexpression can inhibit

tumour growth or invasion, and induce apoptosis, by targeting ERBB3, KRAS, AKT, MDM2 and PAI-1

[30–34]. By contrast, stromal expression of miR-143/145 in lung cancer promotes neoangiogenesis by

targeting CAMK1D, an inhibitory kinase [35]. In physiological processes, miR-143/145 promotes

smooth muscle cells to endothelial cells to further modulate vessel stabilization [36]; they also are

activated independently by Jag-1/Notch signalling to regulate vascular smooth muscle cell

differentiation [37]. Furthermore, they regulate odontoblast differentiation and dentin formation through

the KLF4 and OSX transcriptional factor signalling pathways [38]. These data imply that the effects of

miRNAs occur in a context-specific manner. The effects and their probable mechanism of miR-143/miR-

145 on CA progression or recurrence, but not on malignant transformation, remains largely unknown.

In the present study, with five pairs of CA samples caused by low-risk HPV6b and self-nonlesional

controls using miRNA microarray assay, we found that the expression of 12 miRNAs was dysregulated in

CA, with three showing upregulation and nine showing downregulation. Among these, miR-143 and miR-

145 were the two most commonly downregulated miRNAs. These microarray data were validated with

larger samples using qRT-PCR. To our knowledge, this study is the first report to analyse the relationships

between candidate miRNAs and clinical features of CA and, further, to reveal that reduced miR-143 and

miR-145 correlated inversely to the course of disease and recurrence frequencies, although unrelated to

gender, age, HPV-type and lesion distribution. Patients with lower levels of miR-143 and miR-145 have a

higher recurrence rate and longer disease duration compared with those with higher levels. As discussed,

attenuation of miR-143/miR-145 in hrHPVþ tissues might be caused by hrHPV E6 or E7 oncoproteins.

However, in our study, the expression of miR-143/miR-145 was lower, not only in hrHPVþ CA specimens

but also in lrHPV þ specimens, independent of HPV-types. Further investigation is needed to determine

whether miR-143 and miR-145 expression would be suppressed by lrHPV E6 or E7 protein, or other factors.

Gunasekharan & Laimins [39] revealed that both miR-143 and miR-145 were suppressed seven-fold

in HPV31 rafts compared with the normal rafts. Furthermore, overexpression of miR-145 in HPV-positive

cells resulted in reduced genome amplification to control its own life cycle. In our study, we found that

miR-143 and miR-145 were significantly downregulated in HPV16 þ SiHa cells, compared with HEKs.

By manipulating the levels of candidate miRNAs in SiHa cells by transduction with LV-pre-miRNAs,

we proved a slight role of miR-143 and miR-145 in suppressing cellular proliferation and enhancing

cellular apoptosis. In addition, when we co-treated the transduced SiHa cells with nutlin-3a to induce

cellular apoptosis, an obvious inhibition on cellular proliferation and a significant increase of

apoptotic cells between the pre-miRNA group and control group were observed. Furthermore,

knockout of miR-143 or miR-145 in keratinocytes showed the opposite effect on proliferation and

apoptosis and protected cells from apoptosis induced by nutlin-3a. It is implied that miR-143 or miR-

145 might play a role in regulating CA progress or recurrence.

To explore the probable molecular mechanism of these candidate miRNAs in CA pathogenesis, we

predicted miRNA targets using the three miRNA datasets and found that NRAS emerged as a

putative target of miR-143 or miR-145, based on the predicted results in silico.

NRAS is a member of the RAS oncogene family (which comprises KRAS, HRAS and NRAS). RAS is

activated by a complex signal cascade and, in turn, triggers downstream signalling pathways, such as the

PI3 K/AKT, MAPK and Ral pathways, associated with uncontrolled cell proliferation and tumour growth
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[40,41]. In addition to tumorigenesis, reduction of NRAS using siRNA or miR-146a reduced the proliferation

rate and increased apoptosis in human umbilical vein endothelial cells (HUVECs), resulting in further

involvement in peripartum cardiomyopathy [42]. For epidermal development, combined deficiency of

KRAS, HRAS and NRAS was associated with epidermal thinning and a dramatic decrease in

proliferation of keratinocytes [43]. By contrast, increased expression of RAS or expression of oncogenic

RAS efficiently induced hyperproliferation, papillomas and even SCCs [44]. Our data showed that the

expression of NRAS protein in CA samples was higher than that in self-controls. In addition, NRAS in

SiHa cells was increased compared with that in HEKs, not only at mRNA levels but also at protein

levels. It is suggested that NRAS play a critical role in the progression of CA, especially in forming

papillomas. Furthermore, inhibition of NRAS in SiHa cells showed a similar effect on cellular

proliferation and apoptosis. Based on the results mentioned above and the luciferase assays between

NRAS and miR-143 or miR-145, we infer that in CA, attenuated expression of miR-143 or miR-145

promotes formation of papilloma and inhibition of apoptosis by upregulation of NRAS.

To further investigate the regulatory function of miR-143 or miR-145, we also detected the level of

involved proteins in the PI3 K/AKT pathway. Herein, consistent with previous reports, we observed

that decreased NRAS by exogenous expression of miR-143, miR-145 or siNRAS in SiHa cells further

inhibited the expression of PI3 K p110a and p-AKT, whereas loss of miR-143 or miR-145 in HEKs

resulted in an enhancement of NRAS followed by an increase of PI3 K p110a and p-AKT. The NRAS/

PI3 K/AKT pathway usually has an anti-apoptotic role to promote cellular proliferation, partly due to

AKT-dependent stabilization of MDM2 [24,45]. Inhibition of the PI3 K/AKT pathway sensitized acute

lymphoblastic leukaemia cell lines to nutlin-3a-induced apoptosis [25]. As expected, nutlin-3a

inhibited the expression of involved proteins in the NRAS/PI3 K/AKT pathway, sensitized to nutlin-

3a, promoted cell proliferation and protected cells from cellular apoptosis induced by nutlin-3a.

In this study, we identified NRAS as a direct target of miR-143 or miR-145 in human keratinocytes

and HPV-infected cells. This conclusion is supported by several findings: (i) overexpression of miR-

143 or miR-145 in SiHa cells downregulated the expression of NRAS, and attenuated them by

inhibitor-restored NRAS expression of HEKs; (ii) a complementary sequence of miR-143 or miR-145

was identified in the 30-UTR of NRAS mRNA; (iii) overexpression of miR-143 or miR-145 suppressed

luciferase reporter activity of the NRAS 30-UTR-containing vector, and this effect was eradicated by

mutation of the miR-143 or miR-145 binding site in the NRAS 30-UTR; and (iv) inhibition of NRAS

showed similar effects on cellular proliferation and apoptosis to those of miR-143 or miR-145.

5. Conclusion
In summary, we revealed that miR-143 and miR-145 had an attenuation profile in CA samples compared

with normal skin samples. We further demonstrated that miR-143 and miR-145 regulate cell proliferation

and apoptosis induced by p53 activator by targeting NRAS. Based on our results, lower miR-143/miR-

145 may warrant further evaluation for potential clinical applications in CA, indicating a much higher

rate of recurrence. Restoration of miR-143 or miR-145 to HPV-infected cells induced apoptosis, which

could be applicable to HPV infections in humans with the proper delivery strategy.
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